45 research outputs found

    Descending control in sensitization of reflexes in the rat

    Get PDF
    Electrical stimulation of the heel or toes evokes short latency polysynaptic reflexes in muscles of the ankle extensor medial gastrocnemius (MG), the ankle flexor tibialis anterior (TA) and the knee flexor biceps femoris (BF), the co-ordinated actions of which form an organized protective withdrawal response. Previous studies in the rabbit have shown that such reflexes are enhanced (sensitized) or inhibited by application of the chemogenic agent mustard oil (MO) to various areas of the body surface in a manner that reinforces the protective function of these responses. The organization of these ‘sensitization fields’ was strictly controlled by supraspinal pathways from the brain. The aim of the present experiments was therefore to extend these studies of the spatial organization of sensitization of withdrawal reflexes into the rat, the species most commonly used in pain research. Patterns of facilitation and inhibition of spinal reflexes were obtained and compared in decerebrate spinalized, decerebrate non-spinal, and Alfaxan- anaesthetized rats by applying mustard oil to sixteen different body locations including sites on the ipsilateral and contralateral hindlimbs as well as other off limb areas such as the snout and tail. It was found that in decerebrate spinalized animals, MO application to ipsilateral hindlimb sites enhanced but never inhibited reflex responses in the limb, whilst MO treatment to off limb sites was without effect. In contrast in anaesthetized animals the prevalent effect of MO was inhibition from treatment sites distributed across the entire animal. Reflexes in animals with an intact spinal cord (decerebrate or anaesthetized) were facilitated or inhibited by MO application to ipsilateral hindlimb sites in a way that resembled the modular organization of reflexes per se and previous sensitization studies in the rabbit. However clear differences were also observed in the effects of MO between the two species, including modulation of the heel-MG extensor response in spinalized animals, which in rabbit was inhibited by MO application to the ipsilateral toes whereas in the rat no inhibition by MO was found in spinalized animals. Sensitization of hindlimb reflexes by MO in the rat therefore seems to be influenced by descending inhibitory and facilitatory pathways. These influences were further investigated in subsequent studies. Whilst the predominant effect of spinalization was a loss of inhibition and an expansion of sensitization fields, in the toes-evoked TA reflex the reverse was noted with regard to MO treatment of distal ipsilateral sites. In this case, facilitation found in non-spinal animals did not occur in the equivalent spinalized cohort, and thereby implies that a descending facilitatory pathway is also implicated in the control of spinal reflex excitability in this model. In decerebrate rats, the noradrenergic α2-adrenoceptor antagonist RX 821002 or the serotonergic 5-HT3 receptor antagonist ondansetron were administered directly to the spinal cord (intrathecally, i.t.) either alone (dose-response studies) or as a single dose between two successive MO applications to one of three ipsilateral skin sites on the hindlimb (heel, metatarsophalangeal joints or flexion of the ankle). Cumulative i.t. doses of RX 821002 revealed the presence of tonic descending inhibition of all reflex responses as well as preventing MO-evoked inhibition (and possibly facilitation) of reflex responses suggesting the involvement of the α2-adrenoceptor subtype in mediating these effects in this model. On the other hand, cumulative i.t. ondansetron administration resulted in a decrease in the magnitude of reflex responses, thus indicating that 5-HT3 receptors are indeed implicated in tonic descending facilitation of spinal reflexes. In addition i.t. ondansetron revealed that potentiation (and possibly inhibition) of reflexes following an acute chemogenic insult appears to involve the actions of serotonin at 5-HT3 receptors in the spinal cord. These studies therefore show that the organization of sensitization of hindlimb reflexes in the rat are modulated by supraspinal influences that exist as a balance of descending facilitatory and inhibitory pathways, mediated at least in part by serotonergic 5-HT3 receptors and noradrenergic α2-adrenoceptors

    Descending control in sensitization of reflexes in the rat

    Get PDF
    Electrical stimulation of the heel or toes evokes short latency polysynaptic reflexes in muscles of the ankle extensor medial gastrocnemius (MG), the ankle flexor tibialis anterior (TA) and the knee flexor biceps femoris (BF), the co-ordinated actions of which form an organized protective withdrawal response. Previous studies in the rabbit have shown that such reflexes are enhanced (sensitized) or inhibited by application of the chemogenic agent mustard oil (MO) to various areas of the body surface in a manner that reinforces the protective function of these responses. The organization of these ‘sensitization fields’ was strictly controlled by supraspinal pathways from the brain. The aim of the present experiments was therefore to extend these studies of the spatial organization of sensitization of withdrawal reflexes into the rat, the species most commonly used in pain research. Patterns of facilitation and inhibition of spinal reflexes were obtained and compared in decerebrate spinalized, decerebrate non-spinal, and Alfaxan- anaesthetized rats by applying mustard oil to sixteen different body locations including sites on the ipsilateral and contralateral hindlimbs as well as other off limb areas such as the snout and tail. It was found that in decerebrate spinalized animals, MO application to ipsilateral hindlimb sites enhanced but never inhibited reflex responses in the limb, whilst MO treatment to off limb sites was without effect. In contrast in anaesthetized animals the prevalent effect of MO was inhibition from treatment sites distributed across the entire animal. Reflexes in animals with an intact spinal cord (decerebrate or anaesthetized) were facilitated or inhibited by MO application to ipsilateral hindlimb sites in a way that resembled the modular organization of reflexes per se and previous sensitization studies in the rabbit. However clear differences were also observed in the effects of MO between the two species, including modulation of the heel-MG extensor response in spinalized animals, which in rabbit was inhibited by MO application to the ipsilateral toes whereas in the rat no inhibition by MO was found in spinalized animals. Sensitization of hindlimb reflexes by MO in the rat therefore seems to be influenced by descending inhibitory and facilitatory pathways. These influences were further investigated in subsequent studies. Whilst the predominant effect of spinalization was a loss of inhibition and an expansion of sensitization fields, in the toes-evoked TA reflex the reverse was noted with regard to MO treatment of distal ipsilateral sites. In this case, facilitation found in non-spinal animals did not occur in the equivalent spinalized cohort, and thereby implies that a descending facilitatory pathway is also implicated in the control of spinal reflex excitability in this model. In decerebrate rats, the noradrenergic α2-adrenoceptor antagonist RX 821002 or the serotonergic 5-HT3 receptor antagonist ondansetron were administered directly to the spinal cord (intrathecally, i.t.) either alone (dose-response studies) or as a single dose between two successive MO applications to one of three ipsilateral skin sites on the hindlimb (heel, metatarsophalangeal joints or flexion of the ankle). Cumulative i.t. doses of RX 821002 revealed the presence of tonic descending inhibition of all reflex responses as well as preventing MO-evoked inhibition (and possibly facilitation) of reflex responses suggesting the involvement of the α2-adrenoceptor subtype in mediating these effects in this model. On the other hand, cumulative i.t. ondansetron administration resulted in a decrease in the magnitude of reflex responses, thus indicating that 5-HT3 receptors are indeed implicated in tonic descending facilitation of spinal reflexes. In addition i.t. ondansetron revealed that potentiation (and possibly inhibition) of reflexes following an acute chemogenic insult appears to involve the actions of serotonin at 5-HT3 receptors in the spinal cord. These studies therefore show that the organization of sensitization of hindlimb reflexes in the rat are modulated by supraspinal influences that exist as a balance of descending facilitatory and inhibitory pathways, mediated at least in part by serotonergic 5-HT3 receptors and noradrenergic α2-adrenoceptors

    Localization of Presynaptic Plasticity Mechanisms Enables Functional Independence of Synaptic and Ectopic Transmission in the Cerebellum.

    Get PDF
    In the cerebellar molecular layer parallel fibre terminals release glutamate from both the active zone and from extrasynaptic “ectopic” sites. Ectopic release mediates transmission to the Bergmann glia that ensheathe the synapse, activating Ca2+-permeable AMPA receptors and glutamate transporters. Parallel fibre terminals exhibit several forms of presynaptic plasticity, including cAMP-dependent long-term potentiation and endocannabinoid-dependent long-term depression, but it is not known whether these presynaptic forms of long-term plasticity also influence ectopic transmission to Bergmann glia. Stimulation of parallel fibre inputs at 16 Hz evoked LTP of synaptic transmission, but LTD of ectopic transmission. Pharmacological activation of adenylyl cyclase by forskolin caused LTP at Purkinje neurons, but only transient potentiation at Bergmann glia, reinforcing the concept that ectopic sites lack the capacity to express sustained cAMP-dependent potentiation. Activation of mGluR1 caused depression of synaptic transmission via retrograde endocannabinoid signalling but had no significant effect at ectopic sites. In contrast, activation of NMDA receptors suppressed both synaptic and ectopic transmission. The results suggest that the signalling mechanisms for presynaptic LTP and retrograde depression by endocannabinoids are restricted to the active zone at parallel fibre synapses, allowing independent modulation of synaptic transmission to Purkinje neurons and ectopic transmission to Bergmann glia

    Plasticity of Neuron-Glial Transmission: Equipping Glia for Long-Term Integration of Network Activity

    Get PDF
    The capacity of synaptic networks to express activity-dependent changes in strength and connectivity is essential for learning and memory processes. In recent years, glial cells (most notably astrocytes) have been recognized as active participants in the modulation of synaptic transmission and synaptic plasticity, implicating these electrically nonexcitable cells in information processing in the brain. While the concept of bidirectional communication between neurons and glia and the mechanisms by which gliotransmission can modulate neuronal function are well established, less attention has been focussed on the computational potential of neuron-glial transmission itself. In particular, whether neuron-glial transmission is itself subject to activity-dependent plasticity and what the computational properties of such plasticity might be has not been explored in detail. In this review, we summarize current examples of plasticity in neuron-glial transmission, in many brain regions and neurotransmitter pathways. We argue that induction of glial plasticity typically requires repetitive neuronal firing over long time periods (minutes-hours) rather than the short-lived, stereotyped trigger typical of canonical long-term potentiation. We speculate that this equips glia with a mechanism for monitoring average firing rates in the synaptic network, which is suited to the longer term roles proposed for astrocytes in neurophysiology. Plasticity as the Cellular Basis of Learning and Memory in the Central Nervous System At a high level of abstraction, the brain is essentially an organ that detects environmental stimuli, processes the received sensory information, and initiates an appropriate motor response. From this perspective, the primary role of the brain is information processing, and the computational processes associated with transforming input to output are centred on the network of trillions of synapses through which the signals are relayed. The train of action potentials initiated in sensory neurons must be transduced by the central synaptic networks in such a way as to reliably trigger a pattern of action potentials in the motor neurons that effect the necessary coordinated activation of muscles needed to evoke a behavioural response. It is thus widely accepted that, despite defying human comprehension, there must be a particular spatiotemporal pattern of network activity reliably associated with generating a given response to a given external cue. To cope with a complex and changing environment, the synaptic network must also be adaptable, such that experience can refine and reorganize the spatiotemporal patterns of network activity in response to, for example, injurious stimuli. This adaptability requires controlled alteration of synaptic strength, a phenomenon termed synaptic plasticity The forms and mechanisms of synaptic plasticity have been extensively studied for many decades in many brain region

    Wolbachia and DNA barcoding insects: patterns, potential and problems

    Get PDF
    Wolbachia is a genus of bacterial endosymbionts that impacts the breeding systems of their hosts. Wolbachia can confuse the patterns of mitochondrial variation, including DNA barcodes, because it influences the pathways through which mitochondria are inherited. We examined the extent to which these endosymbionts are detected in routine DNA barcoding, assessed their impact upon the insect sequence divergence and identification accuracy, and considered the variation present in Wolbachia COI. Using both standard PCR assays (Wolbachia surface coding protein – wsp), and bacterial COI fragments we found evidence of Wolbachia in insect total genomic extracts created for DNA barcoding library construction. When >2 million insect COI trace files were examined on the Barcode of Life Datasystem (BOLD) Wolbachia COI was present in 0.16% of the cases. It is possible to generate Wolbachia COI using standard insect primers; however, that amplicon was never confused with the COI of the host. Wolbachia alleles recovered were predominantly Supergroup A and were broadly distributed geographically and phylogenetically. We conclude that the presence of the Wolbachia DNA in total genomic extracts made from insects is unlikely to compromise the accuracy of the DNA barcode library; in fact, the ability to query this DNA library (the database and the extracts) for endosymbionts is one of the ancillary benefits of such a large scale endeavor – for which we provide several examples. It is our conclusion that regular assays for Wolbachia presence and type can, and should, be adopted by large scale insect barcoding initiatives. While COI is one of the five multi-locus sequence typing (MLST) genes used for categorizing Wolbachia, there is limited overlap with the eukaryotic DNA barcode region

    Children must be protected from the tobacco industry's marketing tactics.

    Get PDF

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Descending control in sensitization of reflexes in the rat

    No full text
    Electrical stimulation of the heel or toes evokes short latency polysynaptic reflexes in muscles of the ankle extensor medial gastrocnemius (MG), the ankle flexor tibialis anterior (TA) and the knee flexor biceps femoris (BF), the co-ordinated actions of which form an organized protective withdrawal response. Previous studies in the rabbit have shown that such reflexes are enhanced (sensitized) or inhibited by application of the chemogenic agent mustard oil (MO) to various areas of the body surface in a manner that reinforces the protective function of these responses. The organization of these ‘sensitization fields’ was strictly controlled by supraspinal pathways from the brain. The aim of the present experiments was therefore to extend these studies of the spatial organization of sensitization of withdrawal reflexes into the rat, the species most commonly used in pain research. Patterns of facilitation and inhibition of spinal reflexes were obtained and compared in decerebrate spinalized, decerebrate non-spinal, and Alfaxan- anaesthetized rats by applying mustard oil to sixteen different body locations including sites on the ipsilateral and contralateral hindlimbs as well as other off limb areas such as the snout and tail. It was found that in decerebrate spinalized animals, MO application to ipsilateral hindlimb sites enhanced but never inhibited reflex responses in the limb, whilst MO treatment to off limb sites was without effect. In contrast in anaesthetized animals the prevalent effect of MO was inhibition from treatment sites distributed across the entire animal. Reflexes in animals with an intact spinal cord (decerebrate or anaesthetized) were facilitated or inhibited by MO application to ipsilateral hindlimb sites in a way that resembled the modular organization of reflexes per se and previous sensitization studies in the rabbit. However clear differences were also observed in the effects of MO between the two species, including modulation of the heel-MG extensor response in spinalized animals, which in rabbit was inhibited by MO application to the ipsilateral toes whereas in the rat no inhibition by MO was found in spinalized animals. Sensitization of hindlimb reflexes by MO in the rat therefore seems to be influenced by descending inhibitory and facilitatory pathways. These influences were further investigated in subsequent studies. Whilst the predominant effect of spinalization was a loss of inhibition and an expansion of sensitization fields, in the toes-evoked TA reflex the reverse was noted with regard to MO treatment of distal ipsilateral sites. In this case, facilitation found in non-spinal animals did not occur in the equivalent spinalized cohort, and thereby implies that a descending facilitatory pathway is also implicated in the control of spinal reflex excitability in this model. In decerebrate rats, the noradrenergic α2-adrenoceptor antagonist RX 821002 or the serotonergic 5-HT3 receptor antagonist ondansetron were administered directly to the spinal cord (intrathecally, i.t.) either alone (dose-response studies) or as a single dose between two successive MO applications to one of three ipsilateral skin sites on the hindlimb (heel, metatarsophalangeal joints or flexion of the ankle). Cumulative i.t. doses of RX 821002 revealed the presence of tonic descending inhibition of all reflex responses as well as preventing MO-evoked inhibition (and possibly facilitation) of reflex responses suggesting the involvement of the α2-adrenoceptor subtype in mediating these effects in this model. On the other hand, cumulative i.t. ondansetron administration resulted in a decrease in the magnitude of reflex responses, thus indicating that 5-HT3 receptors are indeed implicated in tonic descending facilitation of spinal reflexes. In addition i.t. ondansetron revealed that potentiation (and possibly inhibition) of reflexes following an acute chemogenic insult appears to involve the actions of serotonin at 5-HT3 receptors in the spinal cord. These studies therefore show that the organization of sensitization of hindlimb reflexes in the rat are modulated by supraspinal influences that exist as a balance of descending facilitatory and inhibitory pathways, mediated at least in part by serotonergic 5-HT3 receptors and noradrenergic α2-adrenoceptors.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Plasticity of Neuron-Glial Transmission: Equipping Glia for Long-Term Integration of Network Activity

    Get PDF
    The capacity of synaptic networks to express activity-dependent changes in strength and connectivity is essential for learning and memory processes. In recent years, glial cells (most notably astrocytes) have been recognized as active participants in the modulation of synaptic transmission and synaptic plasticity, implicating these electrically nonexcitable cells in information processing in the brain. While the concept of bidirectional communication between neurons and glia and the mechanisms by which gliotransmission can modulate neuronal function are well established, less attention has been focussed on the computational potential of neuron-glial transmission itself. In particular, whether neuron-glial transmission is itself subject to activity-dependent plasticity and what the computational properties of such plasticity might be has not been explored in detail. In this review, we summarize current examples of plasticity in neuron-glial transmission, in many brain regions and neurotransmitter pathways. We argue that induction of glial plasticity typically requires repetitive neuronal firing over long time periods (minutes-hours) rather than the short-lived, stereotyped trigger typical of canonical long-term potentiation. We speculate that this equips glia with a mechanism for monitoring average firing rates in the synaptic network, which is suited to the longer term roles proposed for astrocytes in neurophysiology

    Plasticity of Neuron-Glial Transmission: Equipping Glia for Long-Term Integration of Network Activity

    No full text
    The capacity of synaptic networks to express activity-dependent changes in strength and connectivity is essential for learning and memory processes. In recent years, glial cells (most notably astrocytes) have been recognized as active participants in the modulation of synaptic transmission and synaptic plasticity, implicating these electrically nonexcitable cells in information processing in the brain. While the concept of bidirectional communication between neurons and glia and the mechanisms by which gliotransmission can modulate neuronal function are well established, less attention has been focussed on the computational potential of neuron-glial transmission itself. In particular, whether neuron-glial transmission is itself subject to activity-dependent plasticity and what the computational properties of such plasticity might be has not been explored in detail. In this review, we summarize current examples of plasticity in neuron-glial transmission, in many brain regions and neurotransmitter pathways. We argue that induction of glial plasticity typically requires repetitive neuronal firing over long time periods (minutes-hours) rather than the short-lived, stereotyped trigger typical of canonical long-term potentiation. We speculate that this equips glia with a mechanism for monitoring average firing rates in the synaptic network, which is suited to the longer term roles proposed for astrocytes in neurophysiology. Plasticity as the Cellular Basis of Learning and Memory in the Central Nervous System At a high level of abstraction, the brain is essentially an organ that detects environmental stimuli, processes the received sensory information, and initiates an appropriate motor response. From this perspective, the primary role of the brain is information processing, and the computational processes associated with transforming input to output are centred on the network of trillions of synapses through which the signals are relayed. The train of action potentials initiated in sensory neurons must be transduced by the central synaptic networks in such a way as to reliably trigger a pattern of action potentials in the motor neurons that effect the necessary coordinated activation of muscles needed to evoke a behavioural response. It is thus widely accepted that, despite defying human comprehension, there must be a particular spatiotemporal pattern of network activity reliably associated with generating a given response to a given external cue. To cope with a complex and changing environment, the synaptic network must also be adaptable, such that experience can refine and reorganize the spatiotemporal patterns of network activity in response to, for example, injurious stimuli. This adaptability requires controlled alteration of synaptic strength, a phenomenon termed synaptic plasticity The forms and mechanisms of synaptic plasticity have been extensively studied for many decades in many brain region
    corecore